Exercises —

- 1. Convolution integrals. Let x be a positive number and T be the triangle described by $\{(u,t) \in \mathbb{R}^2 | 0 \le u \le x, 0 \le t \le u\}$. Let f be a continuous function defined on [0, x].
 - (a) The convolution integral of *f* is the integral $\hat{f}(x) = \int_T f$ (where *f* is seen as a function on *T* which does not depend on *u*). Show that

$$\widehat{f}(x) = \int_0^x f(t)(x-t)dt$$

- (b) Compute $\widehat{f}(x)$ when $f(t) = e^{-t}$.
- 2. Distance between a point and a curve. Let $f \in C^1$ function on \mathbb{R}^2 . We assume that $S = f^{-1}(\{0\})$ is non empty and the gradient of f vanishes nowhere on S. Recall that the distance d(X, S) between the point $X = (x_0, y_0)$ and S is the infimum of $\{||X s|| | s \in S\}$.
 - (a) We assume that $(x_0, y_0) \notin S$. Recall that, since *S* is closed, d(X, S) = d(X, (x, y)) for some $(x, y) \in S$. Show that the vector $(x x_0, y y_0)$ is collinear to the gradient of *f* at (x, y).
 - (b) Application: compute the distance between the curve xy = 3 and the origin of \mathbb{R}^2 .

— Problems —

- 3. Constrained maximum. Let $n \ge 1$. Let $U_n = (\mathbb{R} \ge 0)^n$ and f_n the function defined on U_n by $f_n(x_1, \ldots, x_n) = -\sum_{j=1}^n x_j ln(x_j)$ with the convention that yln(y) = 0 when y = 0. We want to compute the maximum of f_n on U_n with the constraint $x_1 + \cdots + x_n = 1$.
 - (a) Explain briefly why f_n is continuous on U_n for every $n \ge 1$.
 - (b) Show that f_n admits a (global) maximum on $K_n = U_n \cap \{x | x_1 \cdots + x_n = 1\}$ for every $n \ge 1$.
 - (c) Show by induction that the maximum of f_n on K_n is obtained at $\gamma_n = (\frac{1}{n}, \dots, \frac{1}{n})$ and that $f_n(\gamma_n) = ln(n)$. Hint: use the induction hypothesis to prove that the maximum of f_n is not obtained on the "boundary" $\partial K_n := \{x \in K_n \mid \exists j, x_j = 0\}$.
- 4. Lemoine point of a triangle. Let *T* be a triangle whose edges have positive lengths *a*, *b* and *c*, and with area *S*. If *M* is a point of *T*, we call *x* (resp. *y*, *z*) the distance of *M* to edge of length *a* (resp. *b*,*c*). We want to find the Lemoine point of *T*, i.e. the point minimizing the sum $x^2 + y^2 + z^2$ of squared distances to the edges of *T*.
 - (a) Show that we have 2S = ax + by + cz.
 - (b) Prove that the Lemoine point exists.
 - (c) We assume that Lemoine point is in the interior of *T*. Compute its "coordinates" (x, y, z) using Lagrange method.
 - (d) Show that Lemoine point is in the interior of *T*.

- 5. (Optional) Volume of the *n*-ball. We recall that the volume of a subset A of \mathbb{R}^n is the value $\nu(A)$ of $\int_{\mathbb{R}^n} \chi_A$ (when this number exists). In what follows, D(R, n) is the ball of radius R and centered at 0 of \mathbb{R}^n .
 - (a) Compute $\nu(D(R, 1))$ and $\nu(D(R, 2))$.
 - (b) We assume that $\nu(D(R,n)) = C_n R^n$ where C_n is a positive number which does not depend on R. Let $x = (x_1, \ldots, x_{n+2})$ be a point of D(R, n+2). Using polar coordinates on x_{n+1} and x_{n+2} , show that $\nu(D(R, n+2)) = \int_0^R \int_0^{2\pi} r\nu(D(\sqrt{R^2 r^2}, n)) d\theta dr$.
 - (c) Show that $\nu(D(R,n+2)) = \frac{2\pi R^2}{n} \nu(D(R,n))$